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1. Introduction 
 

The interpretation of mixed pixels is a key factor in the analysis of hyperspectral imagery. Mixed 
pixels are a mixture of more than one distinct substance, and exist for one of two reasons. Firstly, if the 
spatial resolution of the sensor is not high enough to separate different materials, these can jointly occupy 
a single pixel, and the resulting spectral measurement will be a composite of the individual spectra that 
reside within the pixel. Secondly, mixed pixels can also result when distinct materials are combined into a 
homogeneous mixture [1]. This circumstance occurs independent of the spatial resolution of the sensor. 
 

A commonly used approach to mixed pixel classification has been linear spectral unmixing, which 
uses a linear mixture model (LMM) to estimate the abundance fractions of spectral signatures lying 
within a mixed pixel [2]. Although the LMM has been demonstrated in numerous applications to be a 
useful technique for interpreting remote sensing data with high dimensionality, the question of whether 
linear or non-linear processes dominate spectral signatures of mixed pixels is still an unresolved matter. It 
has been reported that the reflectance spectrum of a mixture is a systematic combination of the component 
reflectance spectra in the mixture (usually called endmembers in the literature). The combination tends to 
be linear if components of interest in a pixel appear in spatially segregated patterns. If, however, the 
components are in intimate association, light typically interacts with more than one component as it is 
multiply scattered, and the mixing systematics between the different components are highly nonlinear. 
Nonlinear effects are an area of active research in particular applications such as vegetation and canopy 
studies [3] or water quality assessment [4–5], where LMM generally result in poor mixture analysis 
accuracy.  
 

Artificial neural networks (ANNs) have been widely studied in the literature as a promising 
alternative to accomplish the difficult task of estimating fractional abundances of endmember materials in 
hyperspectral scenes [6]. The advent of ANN approaches in hyperspectral analysis is mainly due to their 
power in pattern recognition and classification [7]. The problem of mixed pixels has been tackled before 
from an ANN-based perspective, specifically, associative ANNs have been used in the past to establish a 
linear mixture model based on endmembers. Despite these attempts, ANN-based nonlinear mixing 
techniques remain largely unexplored for general-purpose applications. Only the pioneering work by 
Guilfoyle and Chang [8], which constructed a neural architecture based on radial basis function (RBF) 
neural networks, can be considered as a general model for ANN-based nonlinear unmixing independent 
of specifical physical properties of the observed land-cover materials. Such specificity usually 
complicates nonlinear models in terms of both implementation and computational complexity, and 
prevents their generalization to different applications, which is one of the most powerful features of the 
LMM. 
 

In this paper we describe a new methodology for inferring land cover fraction within hyperspectral 
scenes. The proposed methodology makes use of a modified multi-layer perceptron (MLP) neural 
network, whose entries are determined by a linear activation function provided by a Hopfield neural 
network (HNN). As a result, our combined HNN/MLP method uses the LMM to provide an initial 
abundance estimation in linear fashion, and then refines the linear estimation using a nonlinear mixing 
model. To the best of our knowledge, this is the first approach in the literature that integrates linear and 
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nonlinear unmixing concepts for fractional abundance estimation in hyperspectral imagery. The 
remainder of the paper is organized as follows. Section 2 describes an Automated Morphological 
Endmember Extraction algorithm that is used in this work to find adequate training samples for the 
proposed neural architecture. Section 3 describes the proposed HNN/MLP method. Section 4 conducts a 
series of experiments where simulated data, made up of real spectra collected by the NASA/JPL Airborne 
Visible and Infra-Red Imaging Spectrometer (AVIRIS), are used to investigate performance of our 
approach. The impact of noise, mixture complexity, and use of radiance/reflectance data on algorithm 
performance are investigated. Section 5 conducts experiments using nonlinearly mixed real data which 
consists of 13 data sets collected by a Relab spectrometer (a high resolution, bi-directional spectrometer at 
Brown University). Our results with simulated and real data indicate that the proposed methodology is 
useful, robust and efficient in the task of identifying land cover fractions from remotely sensed imagery at 
sub-pixel scales, in particular when nonlinear mixtures and/or low SNR conditions dominate the 
hyperspectral data. Section 6 summarizes our conclusions and provides hints at plausible future research. 
 
 
2. Automated morphological endmember extraction 
 

The algorithm used in this work to generate training samples for the proposed neural network 
architecture is the automated morphological endmember extraction (AMEE) algorithm [9]. It is the only 
available endmember extraction algorithm that makes simultaneous use of spatial and spectral 
information via multi-channel morphological processing [10]. The input to the AMEE method is the full 
image data cube, with no previous dimensionality reduction. Let h  denote the input hyperspectral data 
cube and ( )yx,h  denote the pixel vector at spatial location ( )yx, . Similarly, let K  be a kernel defined in 
the spatial domain of the image (the y-x  plane). This kernel, usually called structuring element (SE) in 
mathematical morphology terminology, is translated over the image. The SE acts as a probe for extracting 
or suppressing specific structures of the image objects, according to the size and shape of the SE. Having 
the above definitions in mind, the AMEE method is based on the application of multi-channel erosion and 
dilation operations to the data. The above operations are respectively defined as follows. 
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where dist is the spectral angle mapper (SAM). Multi-channel erosion (respectively, dilation) selects the 
pixel vector which minimizes (respectively, maximizes) a cumulative distance-based cost function, based 
on the sum of the SAM distance scores between each pixel in the spatial neighborhood defined by K  and 
all the other pixels in the neighborhood. As a result, multi-channel erosion extracts the pixel vector that is 
more similar to its neighbors as opposed to multi-channel dilation, which extracts the most spectrally 
distinct pixel in the neighborhood (endmember candidate). It should be noted that, according to the 
definition of morphological erosion and dilation, the above operations are sensitive to the size and shape 
of the SE used in the computation. In our application, a morphological eccentricity index (MEI) is defined 
for each endmember candidate by calculating the SAM distance between the pixel provided by the 
dilation operation and the pixel provided by the erosion. This operation is repeated for all the pixels in the 
scene, using SEs with a range of different sizes, until a final MEI image is generated. A set of 
endmembers signatures { }N

1ii =e   is found by a fully automated approach which consists of two steps [9]: 1) 
automated segmentation of the MEI image and 2) Spatial/spectral region growing of resulting regions.  



 

3. Proposed neural network architecture for solving the nonlinear mixing problem 
 

Once a set of endmember signatures { }N
1ii =e  has been extracted from the original image, our goal is to 

solve the mixing equation ∑
=

=
N

1i
iiy)(x, eh c  for each hyperspectral image pixel ( )yx,h . Let us denote by 

[ ]T
Li2i1ii e,...,e,e=e  a pure endmember signature, where L is the number of spectral bands. Similarly, let 

( )ii afc =  be the contribution of endmember signature ie  in the pixel given by a nonlinear mixing 
function f , where ia  is the real abundance fraction of ie  in the pixel. If we express the problem using a 
matrix notation, i.e. [ ]N21 ,...,, eeeE = , [ ]N21 c,...,c,c=c  and [ ]N21 a,...,a,a=a , then our goal is to solve 
the equation Ty)(x, Ech =  at each pixel. In this work, we propose to solve the linear part of the problem, 
i.e., y)(x,1T hEc −= , by a modified Hopfield neural network (HNN). On other hand, the nonlinear part of 
the problem related with the mixing equation, i.e., ( )ca 1−= f , is solved by using a Multi-Layer 
Perceptron (MLP). The effectiveness of this approach has been demonstrated in previous work [4],[11]. 
 

 
Figure 1. Schematic block diagram summarizing the performance of the HNN module. 

 
 
3.1  Modified Hopfield neural network (HNN) 
 

In order to solve the linear part of the mixing problem, we use a modified Hopfield neural network 
(HNN) with gradient descent learning based on error minimization (see Fig. 1). The number of input 
neurons is N, i.e., the dimension of the fractional abundance vector c . A weight matrix W is created by 
using the sample correlation matrix between AMEE-derived endmember materials { }N

1ii =e . The bias 
vector is dependent on the mixture spectrum under analysis. The proposed HNN is based on an iterative 
process where an initial abundance estimation (t)c  is refined by multiplying (t)c  by the weight matrix. 
The bias vector is then added and the result 1)(t +c  is compared to that obtained at the previous iteration 
until a desired threshold condition is satisfied for convergence. 
 
3.2  Multi-layer perceptron (MLP) 
 

In order to refine the HNN-based linearly derived contribution estimations obtained in the previous 
subsection, we propose to use a Multi-layer perceptron (MLP) neural network. The entries to the MLP are 
the outputs of the HNN, which we denote by i

(HNN)
c , where N ..., 1,i = . The number of input neurons is 

the same as the number of output neurons (see Fig. 2). The number of hidden neurons can be adjusted 
depending on the problem, and is only important in terms of convergence time. In this work, we have 



 

used a recently developed concept of virtual dimensionality (VD), which estimates the number of distinct 
signal sources in the input data, to optimize the number of hidden neurons. On the other hand, the training 
process is based on error back-propagation criteria, where the output nodes and the hidden nodes modify 
their respective weight matrices (W and V in Fig. 2) depending on a pre-defined error (Delta), the input 
data, and an adjustable learning parameter Alpha (see Fig. 3). The delta error of the output layer is 
calculated as the difference between the abundance estimation ouputs ia , N ..., 1,i =  provided by the 
network architecture in Fig. 2 and a set of desired outputs given by ground truth fractional abundances 
available for the training samples. The resulting error is back-propagated to the hidden nodes until 
convergence is reached. 
 
 

W V1
(HNN)
c

2
(HNN)
c

N
(HNN)
c

1a

2a

Na

Input neurons

Hidden neurons

Output neurons

W V1
(HNN)
c

2
(HNN)
c

N
(HNN)
c

1a

2a

Na

Input neurons

Hidden neurons

Output neurons  
 

Figure 2. Architecture of the MLP module. 
 

 
 

Figure 3. Schematic block diagram summarizing the performance of the MLP module. 
 
 
4. Simulation experiments 
 

One of the major problems involved in analyzing the quality of fractional abundance estimation 
methods in remotely sensed imagery is the fact that ground-truth information about the real abundances of 
materials at sub-pixel levels is very difficult (if not impossible) to obtain in real scenarios [10]. This fact 
has traditionally prevented the existence of comparative surveys using large databases of real images. In 
order to avoid this shortcoming, simulation of hyperspectral imagery has been suggested as a simple and 
intuitive way to perform a preliminary evaluation of analysis techniques [12]. The primary reason for the 
use of simulated imagery as a complement to real data analysis is that all details of the simulated images 



 

are known. These details, such as noise, mixture complexity, and use of radiance/reflectance data, can be 
efficiently investigated because they can be manipulated individually and precisely. As a result, algorithm 
performance can be examined in a controlled manner. 

 
In this section, we use simulated data based on real spectra collected by the AVIRIS imaging 

spectrometer [13] to accomplish the following experiments. Two AVIRIS imaging spectrometer datasets 
of the Jasper Ridge Biological Preserve (JRBP) in California have been selected for experiments. The 
datasets are available from http://aviris.jpl.nasa.gov. The datatets, acquired on April 1998, consist of 
512x614 pixels and 224 spectral bands, with a nominal ground resolution of 20 m, spectral resolution of 
10 nm, and 16-bit radiometric resolution. In a previous study of surface materials over JRBP, image 
endmembers were derived from the scenes above based on extensive ground knowledge. Fig. 4 plots 
spectral signatures associated with two of the main constituent materials at JRBP. These signatures, 
denoted as 1r  (soil) and 2r  (evergreen forest), will be used to construct two types of simulated data in this 
paper. Firstly, experiments with simulated linear mixtures are developed. These experiments will be 
mainly used to adjust input parameters such as Alpha and also to test the sensibility of the proposed 
HNN/MLP architecture against the signal-to-noise ratio (SNR). Secondly, nonlinear mixtures are 
simulated using a simple nonlinear function, the logarithmic function, to explore the accuracy of the 
proposed method in the presence of more complex mixtures. Simulation experiments will be used as a 
baseline to interpret results with real hyperspectral data, described in the following section. Next, we 
describe our simulation experiments. 
 
4.1. Simulated linear mixtures 
 

For this experiment, we have artificially mixed 1r  and 2r  in computer simulations to create a 
simulated scene containing linear mixtures. This scene, with a size of 100x100 pixels, is formed by 100 
regions, 1001 ,..., RR , of one-pixel width, representing linear mixtures between 1r  and 2r . Abundance frac-
tions of 1r  at region iR  are assigned by ( )100/i , while abundance fractions of 2r  at iR  are assigned by 

( )100/i1 − , as depicted in Fig. 5(a) and 5(b). The scene represents a subtle mixing scenario where 1r  
progressively infiltrates into 2r  and vice versa. Random noise was added to the scene above to simulate 
contributions from ambient (clutter) and instrumental sources. White gaussian noise was created by using 
numbers with a standard normal distribution obtained from a pseudorandom number generator and added 
to each pixel. For the simulations, we consider the SNR for each band as the ratio of the 50% signal level 
to the standard deviation of the noise, hence following the definition given by Harsanyi and Chang [14]. 
This results in noise standard deviation that is roughly proportional to the average signal, a phenomenon 
often observed in radiometric data. Thus, the simulated hyperspectral data were created, based on a 
simple linear mixture model, by the following expression: 
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where s denotes a vector containing the simulated discrete spectrum at the pixel with spatial coordinates 
( )y,x  of the simulated image, ( )y,xjα  is the assigned fractional abundance of spectral signature at the 
pixel ( )y,x , and ( )y,xn  is the noise factor. Abundance sum-to-one and non-negativity constraints have 
been imposed in the expression in order to provide the simulation with adequate physical meaning. Six 
different SNR values, i.e., 10:1, 30:1, 50:1, 70:1, 90:1 and 110:1, were considered in the simulations. 
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Figure 4. Spectral signatures associated with soil and evergreen forest constituents at AVIRIS Jasper Ridge scene. 

 

       
(a) Soil  (b) Evergreen forest 

 

Figure 5. Fractional abundance maps for soil and evergreen forest in the simulated scene with linear mixtures. 
 
 
Table 1 shows an experimental study of the sensitivity of unconstrained linear spectral unmixing 

(LMM) and the proposed HNN/MLP to SNR using the root mean square error (RMSE) as the error 
metric. Let us denote by N and M the total number of samples and lines in the simulated image. Similarly, 
let us denote by ( )y,xˆ jα  the estimated fractional abundance of endmember material jr  in the pixel at 
spatial coordinates ( )y,x . Then, we can express the RMSE score associated to fractional abundance 
estimation of jr  by: 
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Regarding the training of HNN/MLP in this experiment, we used two different training sets. The first 

training set, designed as training set 1 (TS1), is composed of two AMEE-derived endmembers and 99 
additional training samples corresponding to all possible mixtures between 1r  and 2r . The second 
training set, designed as training set 2 (TS2), is composed of two AMEE-derived endmembers and 9 
additional training samples corresponding to nine representative mixtures between 1r  and 2r . As 
illustrated by equation (3), the LMM model is exclusively based on two AMEE-derived endmembers. As 
shown in Table 1, TS1 and TS2 resulted in very similar results in terms of RMSE in fractional abundance 
estimation for the considered HNN/MLP. 



 

Table 1. Comparison of RMSE in fractional abundance estimation accuracy for simulated linear mixtures of 1r  and 

2r  by LMM and HNN/MLP using the simulated image in Fig. 5. 

Method Material No noise SNR=110:1 SNR=90:1 SNR=70:1 SNR=50:1 SNR=30:1 SNR=10:1

1r  0 0.0019 0.0020 0.0023 0.0037 0.0061 0.0174  

HNN/MLP 
(TS1) 2r  0 0.0019 0.0019 0.0025 0.0033 0.0060 0.0164 

1r  0 0.0015 0.0018 0.0024 0.0032 0.0054 0.0166  

HNN/MLP 
(TS2) 2r  0 0.0016 0.0019 0.0023 0.0032 0.0055 0.0164 

1r  0 0.0056 0.0065 0.0079 0.0106 0.0192 0.0514  
 

LMM 
2r  0 0.0023 0.0032 0.0046 0.0073 0.0158 0.0479 

 
Results in Table 1 reveal that the proposed HNN/MLP neural model seems to be less sensitive than 

the commonly used LSU in fractional abundance estimation of 1r  (soil) and 2r  (vegetation). It is also 
worth noting that HNN/MLP performs considerably better than LSU when the SNR is low, thus revealing 
that our combined linear/nonlinear approach can outperform the unconstrained LMM method in a noisy 
environment. Due to the sensitivity of the HNN/MLP to the Alpha parameter, we have developed 
additional experiments using the simulated image in Fig. 5 in order to determine the influence of Alpha in 
the number of iterations and CPU time in seconds consumed by the proposed method. Specifically, Table 
2 shows the number of iterations and subsequent CPU time for different values of Alpha, where the CPU 
time in seconds was measured in a specific computing environment based on a Personal Computer with 
Pentium V Processor at 1.6 GHz and 512 Mb of RAM. It should be noted that scores by HNN/MLP in 
Table 2 refer to experiments using training set TS2. 

 
Table 2. Number of iterations and CPU time in seconds for different values of Alpha in the HNN/MLP method. 

Alpha -501  -5012 ×  -5013×  -5014 ×  -5015× -5016 × -5017 × -5018× -5019 ×  -401  -301  -201 -101
Iterations 470974 235495 157002 117757 94208 78510 67296 58887 52346 47112 4726 480 44 
CPU time 166 108 79 76 76 76 66 64 69 55 62 48 50 
 

As shown in Table 2, when low values are used for the Alpha parameter, both the number of 
iterations and the CPU time in seconds increase considerably. On other hand, if parameter Alpha is set to 
an appropriate value, both the number of iterations and processing time can be substantially reduced. 
Since the setting of the Alpha parameter only affects convergence rate, not the final estimation results, 
this simple experiment will be used to set the Alpha parameter accordingly in the following experiments, 
which involve both nonlinear mixture simulations and nonlinear mixtures collected in a real analysis 
scenario. 
 
4.2. Simulated nonlinear mixtures 
 

This subsection describes our experiments with simulated nonlinear mixtures. We have created a 
second simulated image with nonlinear mixtures of 1r  and 2r  using a simple logarithmic function. The 
90x90-pixel scene consists of nine vertical regions 91 ,..., RR  of ten pixels in width, containing nonlinear 
mixtures between 1r  and 2r . The abundances of  1r  and 2r  were assigned according to equation (5)  

 ( ) ( )∑
=

⋅=
2

1j
jj y,xy,x crs  (5) 

where ( ) ( )y,xlogy,x jj α=c  is the contribution of endmember jr  and ( )y,xjα  is the fractional abundance 
of jr . Table 3 shows the fractional abundances assigned to each of the nine simulated regions by means of 



 

equation (5). It should be noted that all the pixels in the simulated scene are mixed in different 
proportions (there are no pure instances of any material). 
 

Table 3. Abundance assignment for regions in a simulated scene with nonlinear mixtures. 
Region 1R  2R 3R 4R 5R 6R 7R 8R 9R

( )y,x1α  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
( )y,x2α  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 
Table 4 shows an experimental study of the accuracy of linear spectral unmixing (LMM) and the 

proposed HNN/MLP approach in fractional abundance estimation using the simulated image with 
nonlinear mixtures described above. Four different training sets were used for the training of the network. 
The first one, TS1, is composed of nine spectral signatures that represent every possible mixture in the 
data set. The second one, TS2, uses five out of nine possible mixtures. The third one, TS3, only uses three 
out of nine possible mixtures. Finally, the fourth considered training set, TS4, uses two AMEE-derived 
endmembers from the simulated scene. It should be noted that, since there are no pure pixels in the scene, 
the AMEE algorithm extracted two endmembers that correspond to purest available samples, located in 

1R  and 9R  regions, respectively. As reported by Table 4, the lowest RMSE score in abundance 
estimation was observed when the proposed HNN/MLP method was combined with training set TS1. 
However, it is also clear from Table 4 that results obtained by HNN/MLP using TS2 and TS3 were very 
similar in terms of accuracy to those found by HNN/MLP combined by TS1. When HNN/MLP was 
trained using only the two AMEE-derived endmembers (TS4), the RMSE score was slightly increased. 
The above result seems to indicate that endmember signatures alone may not be appropriate for training 
purposes. Although in this case endmember signatures are not completely pure (i.e., they are obtained as 
the purest available samples) they needed to be combined with additional mixed pixels in order to obtain 
a representative set of training samples for HNN/MLP. Finally, it is clear from Table 4 that the LMM 
clearly produced the worst scores in terms of RMSE. 
 
Table 4. Fractional abundance estimation results for simulated nonlinear mixtures of 1r  and 2r  and resulting RMSE 
after applying the considered methods. 

 

Material 
 

Abundance 
 

LMM HNN/MLP 
(TS1) 

HNN/MLP 
(TS2) 

HNN/MLP 
(TS3) 

HNN/MLP 
(TS4) 

0.9 0.975 0.872 0.869 0.873 0.747 
0.8 0.949 0.757 0.757 0.766 0.727 
0.7 0.920 0.673 0.676 0.687 0.705 
0.6 0.887 0.598 0.600 0.616 0.679 
0.5 0.847 0.523 0.530 0.545 0.649 
0.4 0.799 0.440 0.452 0.468 0.612 
0.3 0.737 0.351 0.361 0.378 0.564 
0.2 0.649 0.230 0.242 0.261 0.497 

 
 
 
 

1r  

0.1 0.499 0.038 0.052 0.074 0.382 
0.9 0.975 0.867 0.869 0.874 0.747 
0.8 0.949 0.754 0.757 0.766 0.724 
0.7 0.920 0.671 0.676 0.687 0.705 
0.6 0.887 0.597 0.603 0.616 0.679 
0.5 0.847 0.523 0.530 0.545 0.649 
0.4 0.799 0.444 0.452 0.468 0.612 
0.3 0.737 0.353 0.361 0.378 0.564 
0.2 0.649 0.233 0.242 0.261 0.497 

 
 
 
 

2r  

0.1 0.499 0.042 0.053 0.073 0.382 
RMSE 0.1101 0.0014 0.0016 0.0021 0.0378 

 



 

5. Real data experiments 
 

Up to now, computer simulations were used to demonstrate the effectiveness of HNN/MLP in 
nonlinear spectral mixture analysis. In this section, real spectra collected from nonlinear mixtures will be 
analyzed. These data, available from Prof. John Mustard’s laboratory at Brown University, consisted of 
13 data sets collected using the RELAB spectrometer (a high-resolution, bi-directional spectrometer at 
Brown University). The measurement precision of the RELAB spectrometer is better than 0.25%, which 
makes it an ideal candidate to evaluate fractional abundance estimation accuracy. The data included 
spectra from individual endmembers such as Olivine, Enstatite and Magnetite [15], where Fig. 6 plots the 
three endmember spectra. Most importantly, the data also contained mixtures of these endmembers with 
abundances listed in Table 5. As a result, the mixture data were the spectra of true mixtures with known 
abundances for each endmember. In the available Mustard data samples for these mineral types, only 
nonlinear mixture spectra with associated abundance values were provided [16]. 

 
Table 5. Mustard’s nonlinear mixture data sets. 

Olivine/Enstatite mixtures Olivine/Magnetite mixtures 
Olivine abundance Enstatite abundance Olivine abundance Magnetite abundance 

0.90 0.10 0.95 0.05 
0.75 0.25 0.90 0.10 
0.50 0.50 0.75 0.25 
0.25 0.75 0.50 0.50 
0.10 0.90 0.25 0.75 
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Figure 6. Mustard’s endmember spectra. 

 
Tables 6 and 7 show an experimental study of the accuracy of linear spectral unmixing (LMM), 

Guilfoyle and Chang’s previously developed nonlinear abundance estimation method which uses RBF 
neural networks, and the proposed HNN/MLP approach in the task of estimating fractional abundances 
using Mustard’s data. Mixtures of Olivine/Enstatite and Olivine/Magnetite are respectively considered. 
While the training for RBF was accomplished as specified in the literature, three different training sets 
were used for the proposed HNN/MLP. The first training set (TS1) is composed of a representative 
spectrum of all possible mixtures. The second training set (TS2), is composed of three out of five possible 
mixtures. Finally, the third training set (TS3) contains no mixture data at all, only spectra corresponding 
to pure mineral signatures. For illustrative purposes, results obtained using the simple LMM as well as 
results obtained by using Guilfoyle and Chang’s approach [8] based on RBF neural networks are also 
reported. 



 

From experimental results in Tables 6 and 7, we can conclude that the proposed HNN/MLP model 
can accurately estimate the abundance of endmember materials in nonlinear mixtures, provided that the 
training set contains a representative set of mixed signatures. When nonlinear mixtures of Olivine and 
Enstatite were considered (see Table 6), we found that the HNN/MLP model trained only with spectral 
endmembers (TS3) cannot perform better than the simple LMM. However, when training sets made up of 
mixed signatures (TS1 and TS2) were used, the proposed HNN/MLP clearly outperformed both the LMM 
and Guilfoyle and Chang’s RBF-based method. It is important to note that no significant difference was 
sought in the abundance estimation accuracy when TS1 or TS2 were used, a fact that reveals that a 
judicious selection of mixed spectra can help reduce the number of required training samples. 

 
Table 6. Fractional abundance estimation results for real nonlinear mixtures of Olivine and Enstatite and resulting 
RMSE after applying the considered methods. 

 

Material 
 

Abundance 
 

LMM 
 

RBF HNN/MLP 
(TS1) 

HNN/MLP 
(TS2) 

HNN/MLP 
(TS3) 

0.90 0.880 0.881 0.916 0.913 0.879 
0.75 0.704 0.700 0.736 0.730 0.703 
0.50 0.452 0.443 0.479 0.468 0.452 
0.25 0.244 0.210 0.266 0.251 0.244 

 
 

Olivine 

0.10 0.115 0.121 0.115 0.117 0.115 
0.90 0.886 0.835 0.886 0.890 0.886 
0.75 0.727 0.761 0.731 0.721 0.725 
0.50 0.535 0.551 0.521 0.517 0.534 
0.25 0.298 0.295 0.263 0.267 0.298 

 
 

Enstatite 

0.10 0.133 0.114 0.083 0.091 0.133 
RMSE 0.0010 0.0012 0.0003 0.0003 0.0010 

 
On other hand, when nonlinear mixtures of Olivine and Magnetite were considered, it is clear from 

Table 7 that Guilfoyle and Chang’s RBF-based method performed the best, with the proposed HNN/MLP 
producing very close results in terms of abundance estimation when both TS1 and TS2 were used as 
training sets. Using only endmember signatures for training produced better results than those found by 
the standard LMM, but the overall accuracy in terms of RMSE decreased as compared to that found by 
RBF and HNN/MLP with other considered training sets.  

 
Table 7. Fractional abundance estimation results for real nonlinear mixtures of Olivine and Magnetite and resulting 
RMSE after applying the considered methods. 

  

Material 
 

Abundance 
 

LMM 
 

RBF HNN/MLP 
(TS1) 

HNN/MLP 
(TS2) 

HNN/MLP 
(TS3) 

0.95 0.843 0.946 1.000 0.965 1.000 
0.90 0.697 0.899 0.883 0.831 0.879 
0.75 0.457 0.765 0.651 0.599 0.608 
0.50 0.255 0.576 0.533 0.435 0.329 

 
 

Olivine 

0.25 0.102 0.300 0.411 0.298 0.138 
0.75 0.895 0.693 0.643 0.708 0.995 
0.50 0.741 0.407 0.513 0.559 0.789 
0.25 0.533 0.199 0.184 0.187 0.271 
0.10 0.298 0.075 0.136 0.127 0.191 

 
 

Magnetite 

0.05 0.153 0.031 0.053 0.030 0.059 
RMSE 0.0429 0.0024 0.0057 0.0044 0.0285 

 
Overall, experiments in Tables 6 and 7 demonstrate that nonlinear abundance estimation methods 

generated a substantially better mass fraction estimate than did the LMM in Mustard’s data. These results, 
combined with those found in computer simulations, indicate that the proposed HNN/MLP method 
worked well on both linearly and nonlinearly mixed data, in particular, when an appropriate set of training 
samples was selected for the learning stage [17]. 



 

6. Conclusions and future research 
 

This paper has described a combined HNN/MLP neural network for estimating the abundance of 
endmember materials in hyperspectral images. The proposed neural model integrates the concepts of 
linear and nonlinear unmixing. In a first stage, a rough estimation of concentrations is accomplished by 
HNN via LMM. This initial estimation is refined by MLP in a second step using nonlinear mixing 
concepts. The experiments conducted in this paper have shown that the proposed HNN/MLP model is a 
useful tool for performing abundance estimation in both simulated and real hyperspectral imagery data, in 
particular, when the data are dominated by nonlinear mixing effects. Since the HNN/MLP used in this 
analysis is a hybrid of linear and nonlinear estimators, it can be easily adapted to either the linear or 
nonlinear mixture model. An important issue for successful application of the combined HNN/MLP 
model is the selection of an appropriate set of training samples for supervised learning. In this work, we 
have explored different training sets composed by several combinations of endmember signatures as well 
as mixed signatures. From our experiments, we conclude that endmember signatures alone cannot define 
an appropriate training set for the network, which also requires other types of training samples such as 
mixed signatures for successful exploitation. Future work will investigate four different types of 
signatures: pure (endmember), mixed, anomalous and homogeneous to develop appropriate mechanisms 
to generate a set of good training samples for HNN/MLP in unsupervised mixed pixel classification [17]. 
Also, since the experiments presented in this paper only consisted of binary mixtures which were intended 
to show the usefulness of the proposed method, further experiments with ternary or quaternary mixtures 
are highly desirable.  
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